Firstly, here's a discussion of the pointer machine versus the RAM machine models from the Handbook of Data Structures (just a convenient online ref, you can check out the wikipedia articles on these machine models, or check out other books):
As you can see, random access of arrays (given i, access A[i]) is possible in unit time on a RAM machine, but not in the pointer machine model.
Secondly, we went over Seidel's algorithm for Undirected Unweighted APSP really fast at the end, so here's the description again:
UUAPSP(adjacency matrix A for G)
- if A is the adjacency matrix for the complete graph K_n, then return d = J_n - I_n, where J_n is the n*n all-ones matrix and I_n is the identity matrix.
- compute B, the adjacency matrix for G^2. (This can be done by setting B_ij = 1 whenever (A^2 + A)_ij > 0, and takes one matrix multiply.)
- D = UUAPSP(B)
- compute D*A, this takes another matrix multiply.
- let d_ij = 2D_ij - 1( (DA)_ij < (D_ij * degree_j) ).
- return the matrix (d_ij)
For the correctness, (DA)_ij = \sum_k D_ik A_kj = sum_{k neighbor of j} D_ik, which we're comparing to D_ij * degree_j in step 5,
We know by Claim 1 that d_ij (the distance in G) should either be 2D_ij or 2D_ij-1, where D_ij is the distance in G^2.
Suppose d_ij should be 2D_ij. In this case, each term in the summation is at least D_ij by Claim 2, and hence the sum is at least D_ij * degree_j. In this case, we (correctly) do not subtract anything and set d_ij = 2D_ij.
On the other hand, suppose d_ij should be 2D_ij - 1. Now Claim 3 implies that each term in the summation is at most D_ij, and at least one term is strictly less than D_ij. Hence the sum is less than D_ij * degree_j. In this case we (correctly) subtract 1, and set d_ij = 2D_ij - 1.
This completes the proof of correctness of Seidel's algorithm for computing the distances. The algorithm to compute (an implicit description of) the shortest paths will be covered as part of the homeworks that accompany this fine television series.
In next lecture, we will cover some other shortest path algorithms: e.g., using the van Emde Boas priority queues, and Goldberg's scaling algorithm to compute valid potentials faster than Bellman Ford. And the homework should be out by tomorrow or Wednesday.
In homework 2, should alpha(n) be defined as min{2k+2| log^{***...*} n <= 2} where * is repeated k times? Or am I missing some trick?
ReplyDeleteNo, just make that "di-diameter O(\alpha n) with O(n alpha n) arcs."
ReplyDelete